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S I M U LATlO N 0 F BAKER- W I 111 AM S F RACTl 0 N AT1 0 N BY 
CONTINUOUS THERMODYNAMICS 

MARGIT T. RATZSCH,* LUTZ TSCHERSICH, and 
HORST KEHLEN 

Chemistry Department 
“Carl Schorlemmer” Technical University 
DDR-4200 Merseburg, German Democratic Republic 

ABSTRACT 

Based on continuous thermodynamics and its application to the 
theory of successive polymer fractionation procedures, a theory of 
column fractionation is developed. In continuous thermodynamics 
the polydispersity of polymers is accounted for by the direct use of 
the continuous distribution function in the thermodynamic equa- 
tions. In this way equations which are favorable for computer simu- 
lations are obtained. As an example, Baker-Williams fractionation 
is chosen for presenting theory and computer simulation. The gen- 
eralization to other column fractionations based on solubility dif- 
ferences is easily possible. 

INTRODUCTION 

Precipitation fractionation as developed by Baker and Williams [l] is 
one of the best known column fractionation procedures. The fractiona- 
tion is performed in a glass-bead filled column with a temperature gradi- 
ent down the column. To start the fractionation, the total polymer is 
precipitated on the glass beads of a section at the entry of the column (or 
in a separate vessel). In a mixing vessel a nonsolvent and a solvent are 
mixed to form a mixture with progressively more solvent power through 
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1000 RATZSCH, TSCHERSICH, AND KEHLEN 

continuous enrichment of the solvent. The polymer is dissolved by ad- 
ding the solvent mixture. The resulting sol phase moves relatively slowly 
in the column, and the polymer in a given increment of the liquid sol 
stream becomes less soluble due to the temperature gradient and precipi- 
tates partially on the glass beads as a gel phase. The fractionation is 
achieved by the repeated exchange of polymer molecules between the 
stationary gel phase and the mobile sol phase. The superposition of a 
solventhonsolvent gradient and a temperature gradient leads to a very 
high separation efficiency. 

There are some papers dealing with the theory of precipitation frac- 
tionation [2-51. They give an explanation of some experimental effects. 
However, the authors consider only one or two polymer species. In the 
present work the polydispersity of the polymer will be fully accounted for 
by direct use of the continuous molecular weight distribution. 

The treatment will be based on a model subdividing the column into 
stages and the solution stream into parts with equal volumes. Hence, the 
column fractionation will be considered as a combination of many local 
liquid-liquid equilibria and treated in an analogous way as successive 
fractionation procedures. The problem is the mathematical and computer 
treatment of such a large number of connected equilibria. The applica- 
tion of continuous thermodynamics to successive fractionation proce- 
dures presented earlier [6] resulted in a lucid structure of the correspond- 
ing equations. These equations form the basis for theory and computer 
simulation of the Baker-Williams fractionation. 

MODEL 

At first a model is needed for describing the column fractionation by a 
number of local equilibria. In this paper a model is used similar to that by 
Smith [5 ] .  The column is subdivided into stages labeled with m (m = 0, 
1, 2, . . . ). The liquid stream is also subdivided into increments with 
equal volumes, labeled with n (n = 0, 1, 2, . . . ). At time zero the 
volume increment n = 0 fills stage m = 0, at time one the volume incre- 
ment n = 0 occupies stage m = 1 and the volume increment n = 1 occu- 
pies stage m = 0, etc. Each volume increment n at each stage m is consid- 
ered to form a liquid-liquid equilibrium (nm) between the sol phase ’ and 
the gel phase ”. The gel phases ”, which are coated on the surfaces of the 
small glass beads, are stationary, i.e., they remain at the same stage rn 
during the progress of time. However, the moving sol phases ’ always 
remain in the same volume increment n. 
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SIMULATION OF BAKER-WILLIAMS FRACTIONATION 1001 

Starting the fractionation the total polymer is assumed to be precipi- 
tated at stage m = mp = 0 or to be distributed evenly among the m, + 1 
stages from m = 0 to m = m,,. The temperature gradient is expressed by 

T,,, = To; 

T,,, = To - (m - m,)AT; 

m I mp 
m > m, 

Here T,,, is the temperature of stage m and ATis the constant temperature 
difference between neighboring stages. The segment fraction Y of the 
solvent in the solventhonsolvent mixture supplied to the entry (*) of the 
column, Y;, is assumed to be given by 

Y; = Y; + AY*[1 - exp(-n/n*)] (2) 

where Y;, AY*, and n* are the parameters of the function. The polymer 
fractions are obtained from the sol phases ’ of the last stage. 

PHASE EQUILIBRIUM 

The theoretical basis of the polymer distribution between two phases is 
formed by the thermodynamics of the liquid-liquid equilibrium (LLE) of 
polymer solutions. Detailed treatments by continuous thermodynamics 
[7, 81 and its application to successive polymer fractionation [6] were 
presented earlier. In the present paper the nomenclature and the equa- 
tions describing phase equilibria conform to [6] with some enlargements 
resulting from the presence of the second solvent. Therefore, only the 
most important equations will be summarized. 

A solution of a solvent A, a nonsolvent B, and a polydisperse polymer 
C is considered. The individual species of the polymer C are identified by 
their segment numbers r .  The essence of continuous thermodynamics 
consists in considering r as a continuously variable quantity. The compo- 
sition of the polymer is described by the segment molar distribution 
function W(r), i.e., W(r)dr equals the segment fraction of all polymer 
species with segment numbers between r and r + dr. If r, is the smallest 
and r0 the largest occurring segment number of polymer molecules, the 
normalization relation reads 

{W(r)dr = 1 ,  { = c r 0  
a 

(3) 
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1002 RATZSCH, TSCHERSICH, AND KEHLEN 

The number-average segment number (r)  of a considered phase is given 
bY 

where J.  is the overall segment fraction of the polymer in this phase, 
Y(l - $) is the segment fraction of the solvent, and (1 - Y)(1 - J.)  is 
the segment fraction of the nonsolvent. 

The equations describing the phase equilibrium are obtained by com- 
bining the equilibrium conditions with the material balances. Continuous 
thermodynamics of the LLE results in simple relations interrelating the 
distribution functions of the polymer in the two coexisting phases ' and " 
and in the feed-phase F [a: 

6 gives the fraction of the overall amount of segments in the feed that 
forms phase ", and K is the precipitation rate: 

The quantities 7, which are the segment molar activity coefficients, may 
be calculated from the excess Gibbs energy relation. 

As discussed earlier [6], Eqs. ( 5 )  and (6) directly provide the unknown 
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SIMULATION OF BAKER-WILLIAMS FRACTIONATION 1003 

distribution functions W(r) and W ( r ) .  The other unknowns of the prob- 
lem (Y”, $”, P”, and 4) may be calculated from the system of equations 
obtained by combining equilibrium conditions and material balances: 

THEORY OF BAKER-WILLIAMS FRACTIONATION 

The theory is based on the model described above which subdivides 
the column fractionation procedure into many local phase equilibria. In 
this way the phase equilibrium relations presented above can be applied. 
The considered volume increment n and the considered column stage m 
will be indicated as subscripts of the corresponding quantities, e.g., Eq. 
( 5 )  now reads 
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1004 RATZSCH, TSCHERSICH, AND KEHLEN 

If an equilibrium (nm) is established, the sol phase (nm)’ is moved to the 
next column stage and the gel phase (nm)” is waiting for the next volume 
eluent. In contrast to the preceding section, the feed for a LLE does not 
exist as a homogeneous phase, i.e., the feed (n + 1, m + 1)Ffor the LLE 
(n + 1 ,  m + 1) is the union of the mobile sol phase (n + 1, m)’ and the 
stationary gel phase (n, m + 1)”. Accordingly multiple, simultaneous 
phase equilibria are interrelated by the material balances, reading for the 
polymer 

Here w(r) is the extensive distribution function, i.e., w(r)dr equals the 
amount of segments of all polymer species with segment numbers be- 
tween r and r + dr. It is interrelated with the intensive distribution func- 
tion W(r) according to W(r) = w(r) /yc ,  where 5c is the overall amount 
of segments of all polymer species in the phase considered. Correspond- 
ingly, the material balance reads in intensive terms 

The quantity E,,  is the ratio of the overall amount of segments (solvent + 
nonsolvent + polymer) in the feed (nmr  and in the feed (O,O)F, respec- 
tively. It accounts for differences in the overall amounts of segments in 
the different feeds (nm)F and, since these differences are small, it roughly 
equals unity. At stage m = 0 the condition 

En() = 1 (19) 

is realized by the amount of solvent mixture added. In the other cases E 

follows from the phases combined, leading to 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
7
:
3
9
 
2
4
 
J
a
n
u
a
r
y
 
2
0
1
1



SIMULATION OF BAKER-WILLIAMS FRACTIONATION 1005 

i = O  

and 

The combination of Eqs. ( 5 )  and (6), as applied to the equilibrium 
considered, and of Eq. (17) interrelates the polymer distributions in the 
feeds of neighboring equilibria 

For the special cases m = 0 and n = 0, the relation simplifies to 

respectively. Successive substitution according to Eqs. (22)-(24) results in 

k=O i-l L s=ji 

with 

k 
n ( > = l i f k < j ;  m , = ~  
i- j  

Equation (25) permits the direct and explicit calculation of the various 
polymer distribution functions c m ( r )  from the distribution function 
flW(r) of the original polymer. The unknowns of Eq. (25) are qy, #, 
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1006 RATZSCH, TSCHERSICH, AND KEHLEN 

?$', and & for i = 0, 1, . . . , n a n d j  = 0, 1 ,  . . . , m. These quantities 
are to be calculated successively. For example, the calculation is first 
m a d e f o r j = O a n d i = O ,  1 , .  . . , n , a n d t h e n f o r j =  l a n d i = O ,  1 ,  
. , . , n etc. from Eqs. (9)-(12) as applied to the equilibrium (0). The 
calculation of the corresponding quantities for the phases ' and for the 
feeds is possible by applying the material balances as presented in Appen- 
dix I. If at the beginning of the fractionation the polymer is precipitated 
in more than one stage (m, > 0), the relations presented in Appendix I1 
are to be applied. 

COMPUTER SIMULATION 

The results presented in the next section are basedqn the following 
specifications. The segment molar excess Gibbs energy GE reads 

with xAB = 500K/T, xAc = 150K/T, and xBC = 250KIT. 

the Schulz-Flory function 
The distribution of the original polymer is assumed to be described by 

r 
= exP (- k) 

Furthermore, the following values are applied: r A  = 1, r B  = 1, & = 
0.02, mp = 2, To = 340 K, AT = 2.5 K, Y$ = 0.01, AY* = 0.3, and n* 
= 30. 

In order to simulate a hypothetical column fractionation, special soft- 
ware had to be developed. This was done in FORTRAN 77 for a personal 
computer in two separate program parts. One part permits the successive 
calculation of the local equilibria and stores the LLE quantities. The 
other part is needed to interpret these quantities and to present the results 
in the desired manner. 

The problem is the calculation of hundreds or thousands of connected 
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SIMULATION OF BAKER-WILLIAMS FRACTIONATION 1 007 

equilibria for a system of a solvent, a nonsolvent, and a polydisperse 
polymer in acceptable time. For each equilibrium (nm), the system of 
Eqs. (9)-(12) has to be solved numerically. Due to the simple structure of 
Eq. (26), it was possible to eliminate t" and to reduce, in this way, the 
system of equations to be solved. In Eqs. (11) and (12) a numerical 
integration is necessary for the connected equilibria (see Eq. 25). The 
starting values of the equilibrium calculations are found by approxima- 
tion routines or, if necessary, by a random procedure. Since the results of 
each LLE calculation are saved immediately, an interruption and contin- 
uation of the column calculation is possible. 

RESULTS 

The application of the computer simulation permits the investigation 
of various effects in the field of column fractionation. In Fig. 1 the 
calculated polymer distribution functions for two fractions are shown. 

2 106.7 0.0253 0.079 
4 185.2 0.0135 0.106 - 

0 100 200 300 400 500 r 

FIG. 1. Polymer distribution functions of Fractions 2 and 4 for a computer- 
simulated hypothetical Baker-Williams fractionation. Fraction 2 contains the 
polymer of the volume increments 11 to 20 and Fraction 4 of the volume incre- 
ments 31 to 40. 
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1008 RATZSCH, TSCHERSICH, AND KEHLEN 

The column was subdivided into 13 stages: 3 stages containing the poly- 
mer at the start and 1 0  fractionation stages. The quantity q is the quo- 
tient of the total amount of polymer segments in the phase considered 
and in the original polymer. r, and P, are the number-average and the 
weight average segment number, respectively, and the nonuniformity U is 
defined by U = P, /P ,  - 1. The fractionation effect in one of the many 
equilibria is illustrated in Fig. 2. Due to fractionation, the polymer distri- 
bution in the mobile phase ' becomes smaller and smaller while running 
through the column as shown as Figs. 3 and 4. 

An important problem is the relationship between the nonuniformity 
U of the fractionated polymer and the number of stages m. A favorable 
plot is shown in Fig. 5 .  If the temperature gradient is properly chosen, the 
nonuniformity proves, to a rough approximation, to be inversely propor- 
tional to the number of stages m. Deviations occur especially at small 
values of n. 

Another point of interest is the comparison of fractionation efficien- 
cies for a mixed solvent and a pure solvent. Experimental investigations 

FIG. 2. Liquid-liquid equilibrium (n = 20, m = 10). (- -) Polymer distribu- 
tion of phases combined. (-) Polymer distribution of the coexisting phases ' 
and ". 
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SIMULATION OF BAKER-WILLIAMS FRACTIONATION 1009 

FIG. 4. Fractionation effect in the column, illustrated for some polymer distri- 
butions with segment numbers near r = 200 in the mobile phase ’ at various 
stages m. 
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on LLE [9, 101 provide nearly the same efficiencies in both cases. Figure 6 
shows that the theoretical result conforms to the experimental ones. Cal- 
culations with various interaction parameters in Eq. (26) lead to the 
statements that (i) the fractionation efficiency of a mixed solvent is not 
better than that of a pure solvent, and (ii) the use of a relatively poor 
solvent and a relatively inert precipitant (nonsolvent) is favorable for 
column fractionation. 

APPENDIX I 

Calculation of $', Y', and P': 
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2.0.1 / 
feed ( U = l )  

1.5 . / 2 solvents 
(U= 0.75) 

/ 
O F  
0 100 200 300 400 500 7 

FIG. 6. Comparison of efficiencies for the used mixed solvent and a pure 
= 0.02, q“ = 0.659. Mixed solvent: solvent. Conditions: For R = 0, m = 0: 

Y$ = 0.22, To = 340 K. Pure solvent: Y = 0, xBC = 0.6015. 
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1012 RATZSCH, TSCHERSICH, AND KEHLEN 

Calculation of YF: 

where Y* is given by Eq. (2). 
Calculation of 6 

(A. 10) 

(A. 11) 

(A.12) 

APPENDIX II 

Modification of Eqs. (20), (24), (A.5), and (A.ll)  for the case 
mp > 0: 

(A. 16) 
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